

Use of high-energy X-ray microbeams for phase and strain mapping

Jon Almer and Ulrich Lienert
X-ray Science Division, ANL

Di-Jia Liu
Chemical Technology Division, ANL

Yana Qian Northwestern University, Evanston, IL

APS Users Meeting
May 9, 2007

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Outline

- Survey of probe sizes & techniques
- Sector 1-ID beamline for high-energy x-ray studies
- Solid oxide fuel cell
 - Phase and strain mapping with 1-d resolution
- Advanced gear steel
 - Strain mapping with 3-d resolution

Probe sizes of selected techniques

Spatial resolution (1-d or 2-d)

Strain scanning at the APS

APS Collaborative Access Teams by Sector & Discipline

APS 1-ID beamline

Key components

- Undulator
- Optimized HE optics (transverse resolution)
- Environment
 - Furnaces
 - Tensile/compressive loading rigs
 - MTS device
- Conical slit for longitudinal resolution
- Large (fast) area detectors

Conical slit (7 rings)

GE detector

Focusing using sawtooth refractive lenses

Collaborators: C. Ribbing (Uppsala) and B. Cederstrom (KTH), Sweden Typical focal sizes:

18 um (weak focusing; zo:zi ~ 36:24 m)

1.5um (strong focusing; zo:zi ~ 60:1 m)

Even at 'strong focusing' the divergence is ~200 urad, low enough for high-quality diffraction

- * high-energy monochromator is effectively brilliance preserving - minimal aberrations (some dependence on bend radii)
- * use of pure material (single-crystal Si) gives minimal small-angle scattering from lens
- * no absorption along lens optic axis (y=0)
- * lens focus distance z can be varied through y
- * theoretical image size:

$$S_i = S_o(Z_o/Z_i)$$

Case study I: Phase and strain mapping in solid-oxide fuel cells

Collaborators:

Di-Jia Liu and Terry Cruze Chemical Technology Division, ANL

Electrochemical Processes for Solid Oxide Fuel Cells (SOFCs)

Operating Principle of an SOFC

Anode $H_2 + O^2 \rightarrow H_2O + 2e^-$

 $CO + O^2 \rightarrow CO_2 + 2e^-$

H₂ & CO Oxidation Reactions

Cathode $O_2 + 4e^- \rightarrow 2 O^{2-}$

O₂ Reduction Reaction

Artist's rendition of FutureGen power plant

Metallic Interconnect is Crucial in Reducing Material & Manufacturing Cost for SOFC

Cr Poisoning – A Material Challenge in SOFC Development

- SOFC deactivation is often associated with Cr accumulation in the cathode originated from metallic interconnect
- Knowledge of different Cr species & distribution is critical for understanding the deactivation mechanism
- Past experiments were limited to imaging (SEM, EDX, etc.) inconclusive in separating phase & distribution
- Conventional XRD method lacks spatial resolution and sensitivity

Cr Ka1

Significant enrichment of Cr is observed at the cathode and electrolyte interface

Use microfocused high-energy x-rays to map Cr phases, internal strains and phase stoichiometry

Button Cell Setup for Cr Poisoning Study

Test Conditions

- Current Density 250 mA/cm²
- Air Flow 70 sccm
 - (at -1.15A, ~25% O₂ utilization)
- Fuel Flow 400 sccm (50% N₂, 50% H₂)
 - (at -1.15A, ~4% H₂ utilization)

HEWAXS Characterization of Chromium Phase and Spatial Distributions in a Contaminated SOFC

Cross-sectioned SOFC embedded in epoxy

Cross-section of SOFC Investigated (1mm thick)

LSM Contact Paste

LSM Cathode (Top Layer)

LSM/YSZ Cathode (Active Layer)

YSZ Electrolyte

Ni/YSZ Anode

SEM Image of InDec SOFC Cross-section

Diffraction data from SOFC

Typical pattern Mar345, E=80.7 keV

Intensity

Smooth & constant vs azimuth (fine grained, no texture)
Phase composition analysis

Radius versus azimuth

- deviatoric strain
- $\Delta \varepsilon = (r_{xx} r_{yy})/r_{mean}$

Mean radius

- •Estimate intraphase composition changes
 - $\Delta d_{hkl}/d_{hkl} = -(r_{hkl} r_{mean})/r_{mean}$

Chromia and Manganese Chromium Spinel are Unambiguously Identified

GSAS refinement – interface region (5 phases)

How low can you go?

GSAS-derived weight fractions for 4/5 SOFC phases

- Transition between 2 Cr phases in "active cathode" region
- Cr₂O₃ strongly associated with YSZ content and current collector position
 - suggests formation through electrochemical reduction
- Cr/Mn spinel has weaker spatial association
 - possibly formed by direct chemical process (Cr transport through gas & solid diffusion)
- A continuous layer of Cr₂O₃ built at the cathode/ electrolyte interface
 - probably plays a key role in raising impedance and blocking mass transfer

Cr₂O₃ and (MnCr)₃O₄ Phase and Concentration Distribution in Deactivated SOFC Cell

Cr Accumulation Mechanism

Generation at metallic interconnect

$$Cr_2O_3(s) + 1.5O_2(g) + 2H_2O(g) = 2CrO_2(OH)_2(g)$$

Deposition through Electrochemical Process

$$2CrO_2(OH)_2(g) + 6 e^- = Cr_2O_3(s) + 2H_2O(g) + 3O^{2-}$$

Deposition through Chemical Process

$$3CrO_2(OH)_2(g) + La_{1-x}Sr_xMnO_3(s) = La_{1-x}Sr_xCrO_3(s) + MnCr_2O_4(s) + 3H_2O(g) + 2.5O_2$$

K. Hilpert, D. Das, M. Miller, D. H. Peck and R. Weiß, *J. Electrochem. Soc.* **143**, 3642, 1996 S. P. S. Badwal, R. Deller, K. Foger, Y. Ramprakash, J. P. Zhang, *Solid State Ionics*, **99**, 297, 1997

Internal strain and intraphase composition versus depth

Case study II: Strain and stress mapping in advanced structural steels

Collaborators:

Yana Qian and Greg Olson Northwestern University

Advanced structural steel

Material - Ferrium® C67

- ➤ Belongs to a new class of carburized secondary hardening gear and bearing steels, utilizing an efficient M2C precipitate strengthening dispersion.
- > Combines a tough ductile core with an ultra-hard carburized case that can achieve hardness levels of up to 67 HRC, promoting high wear and contact fatigue life.
- ➤ Is the product of an ongoing research and development program with the objective of reducing gear weight by as much as 50% over conventional carburized gear steels.

US Patent Number 6,176,946 B1

Application

➤ High power density transmission systems: helicopters, heavy machinery, racing, and manufacturing.

Material Properties

Temper	YS (ksi)	UTS (ksi)	EI (%)	Core Hardness (HRC)	Case Hardness (HRC)
Overage	180	230	17	48-50	65-67

C67 microstructure (SEM)

Laser Peening

a. Surface area to be laser shocked, showing the laser beam and overlays.

Ref: Laser Shock Processing Technical Bulletin No. 1, LSP Technologies, Inc.

b. Effect of laser beam at the overlay-workpiece interface.

Experimental geometry for non-destructive mapping

Wear samples

- Ground
- Shot peened
- Laser peened

- rotate for grain averaging
- Conical slit
 - 3-d gage volume (~20x20x150 um^3)
 - normal & axial components simultaneously
- move sample in x2 for depth resolution

Diffraction Patterns from sample

Without Conical Slit

Powder Diffraction
7 BCC reflections

With Conical Slit

η=90° normal strain component

4 BCC Reflections

(211) is chosen for analysis.

Peak position versus orientation – deviatoric strain

Residual Strain vs Depth – 3 conditions

- Results for martensite (211):
- 3 measured strain components
- regions away from wear tracks
- 25 um step width

Residual Stress vs Depth, Laser-Peened Sample

Main observations

- Significant compressive residual stresses due to initial thermo-mechanical processing
- Increase in RS after laser peening
- After RCF, RS maximum shifts to subsurface, no appreciable fading

Additional microstructural information: peak broadening vs depth

RCF wear induces reduction in peak broadening

— lower martensite fraction and/or defect density

Confirmation of microstructural changes with optical microscopy

Surface Untested Wear track raceway

Microstructure alters during rolling contact fatigue, suggesting partial transformation from martensite to ferrite.

Summary and Outlook

- High-energy x-ray scattering is a powerful technique for materials investigation
- Sector 1 instrument benefits from:
 - 7 GeV synchrotron + undulator source
 - Optics:
 - Brilliance-preserving monochromator
 - Refractive focusing lenses
 - Conical slit
 - Two-dimensional detectors (fast and large)
- Solid –oxide fuel cell stack
 - Gage volume ~2x50x1000 um^3
 - Phase ID yields information on mechanism of Cr-poisoning
 - Strain TEC differences are non-negligible, Cr2O3 induces additional strain.
 - Lattice parameter stoichiometry variations clearly seen
 - Future in situ studies are envisioned
- Advanced structural steel
 - 3-d gage volume~20x20x150 um^3
 - High residual stresses due to laser and shot-peening
 - Stress relaxation under wear tracks

Potential New Applications of Microfocused X-ray Scattering Technique for the Study of SOFCs

- New phase identification at different boundary and depth of layers
- Solid state interfacial reaction between different phases
- 3-D strain and lattice deficiency distribution
- Density, surface area, porosity, grain size and morphology changes in SOFC at micron spatial resolution
- In-situ, real-time study at elevated temperature (1000 °C, 50~100 °C/sec)
- In-situ, real-time study under SOFC operating conditions

Accumulation of Cr₂O₃ Induces Deviatoric Strains on All Phases

In-plane compressive strains are directly associated with Cr₂O₃ buildup

Distribution of Different Cr Phases as a Function of Cathode Depth

